
Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net : Reinventing the Internet

lightweight, scalable and userfriendly

Bernd Paysan

#wefixthenet, 31c3, Hamburg



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Outline
Motivation

Topology
Low–Overhead Packet Format

Encryption
Key Exchange
Symmetric Crypto

Flow Control

Commands

Distributed Data

Applications
Apps in a Sandbox
API Basics



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

1.5 years after Snowden

What happend to change the world:

Politics More spying, more cyberwar, more terrorist panic —
don’t count on them

Users 700 million users changed their behavior (that’s
probably 700 million terrorists)

Software Lots of work, even WhatsApp got some crypto!
Protocols Most of the Internet still is a complete mess with

security tugged in



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

1.5 years after Snowden

What happend to change the world:

Politics More spying, more cyberwar, more terrorist panic —
don’t count on them

Users 700 million users changed their behavior (that’s
probably 700 million terrorists)

Software Lots of work, even WhatsApp got some crypto!
Protocols Most of the Internet still is a complete mess with

security tugged in



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

1.5 years after Snowden

What happend to change the world:

Politics More spying, more cyberwar, more terrorist panic —
don’t count on them

Users 700 million users changed their behavior (that’s
probably 700 million terrorists)

Software Lots of work, even WhatsApp got some crypto!
Protocols Most of the Internet still is a complete mess with

security tugged in



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

1.5 years after Snowden

What happend to change the world:

Politics More spying, more cyberwar, more terrorist panic —
don’t count on them

Users 700 million users changed their behavior (that’s
probably 700 million terrorists)

Software Lots of work, even WhatsApp got some crypto!
Protocols Most of the Internet still is a complete mess with

security tugged in



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

1.5 years after Snowden

What happend to change the world:

Politics More spying, more cyberwar, more terrorist panic —
don’t count on them

Users 700 million users changed their behavior (that’s
probably 700 million terrorists)

Software Lots of work, even WhatsApp got some crypto!
Protocols Most of the Internet still is a complete mess with

security tugged in



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

The Enemies of the Internet

Criminals malware, DDoS attacks, spam, …
Corporations walled gardens, censorship, big honeypots for dragnet

surveillance, …
Government dragnet surveillance, censorship, …

Users careless, uninformed, annoying, …
Software bloated, buggy, insecure, …



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

The Enemies of the Internet

Criminals malware, DDoS attacks, spam, …
Corporations walled gardens, censorship, big honeypots for dragnet

surveillance, …
Government dragnet surveillance, censorship, …

Users careless, uninformed, annoying, …
Software bloated, buggy, insecure, …



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

The Enemies of the Internet

Criminals malware, DDoS attacks, spam, …
Corporations walled gardens, censorship, big honeypots for dragnet

surveillance, …
Government dragnet surveillance, censorship, …

Users careless, uninformed, annoying, …
Software bloated, buggy, insecure, …



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

The Enemies of the Internet

Criminals malware, DDoS attacks, spam, …
Corporations walled gardens, censorship, big honeypots for dragnet

surveillance, …
Government dragnet surveillance, censorship, …

Users careless, uninformed, annoying, …
Software bloated, buggy, insecure, …



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

The Enemies of the Internet

Criminals malware, DDoS attacks, spam, …
Corporations walled gardens, censorship, big honeypots for dragnet

surveillance, …
Government dragnet surveillance, censorship, …

Users careless, uninformed, annoying, …
Software bloated, buggy, insecure, …



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How many defects?

• Dan Geer: buy all zero-days
• Condition: The number of bugs are finite. Are they?
• Bug density between 1/100LoC (CMM 1) to <1/10kLoC

(Correct by Design [3])
• Networked applications and protocol stacks in orders of

1M–100MLoC
• Unless we stop bloating, we are doomed
• Therefore: Keep it simple!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How many defects?

• Dan Geer: buy all zero-days
• Condition: The number of bugs are finite. Are they?
• Bug density between 1/100LoC (CMM 1) to <1/10kLoC

(Correct by Design [3])
• Networked applications and protocol stacks in orders of

1M–100MLoC
• Unless we stop bloating, we are doomed
• Therefore: Keep it simple!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How many defects?

• Dan Geer: buy all zero-days
• Condition: The number of bugs are finite. Are they?
• Bug density between 1/100LoC (CMM 1) to <1/10kLoC

(Correct by Design [3])
• Networked applications and protocol stacks in orders of

1M–100MLoC
• Unless we stop bloating, we are doomed
• Therefore: Keep it simple!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How many defects?

• Dan Geer: buy all zero-days
• Condition: The number of bugs are finite. Are they?
• Bug density between 1/100LoC (CMM 1) to <1/10kLoC

(Correct by Design [3])
• Networked applications and protocol stacks in orders of

1M–100MLoC
• Unless we stop bloating, we are doomed
• Therefore: Keep it simple!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How many defects?

• Dan Geer: buy all zero-days
• Condition: The number of bugs are finite. Are they?
• Bug density between 1/100LoC (CMM 1) to <1/10kLoC

(Correct by Design [3])
• Networked applications and protocol stacks in orders of

1M–100MLoC
• Unless we stop bloating, we are doomed
• Therefore: Keep it simple!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How many defects?

• Dan Geer: buy all zero-days
• Condition: The number of bugs are finite. Are they?
• Bug density between 1/100LoC (CMM 1) to <1/10kLoC

(Correct by Design [3])
• Networked applications and protocol stacks in orders of

1M–100MLoC
• Unless we stop bloating, we are doomed
• Therefore: Keep it simple!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Where are the defects?

44% Specification

15% Design&implementation

6% Installation&commissioning

15% Operation&maintenance

20% Changes after comissioning

Figure : Bugs by phase [2]



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o in a nutshell

net2o consists of the following 6 layers (implemented bottom up):

2. Path switched packets with 2n size writing into shared
memory buffers

3. Ephemeral key exchange and signatures with Ed25519,
symmetric authenticated encryption+hash+prng with Keccak,
symmetric block encryption with Threefish

4. Timing driven delay minimizing flow control
5. Stack–oriented tokenized command language
6. Distributed data (files) and distributed metadata (prefix hash

trie)
7. Apps in a sandboxed environment for displaying content



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o in a nutshell

net2o consists of the following 6 layers (implemented bottom up):

2. Path switched packets with 2n size writing into shared
memory buffers

3. Ephemeral key exchange and signatures with Ed25519,
symmetric authenticated encryption+hash+prng with Keccak,
symmetric block encryption with Threefish

4. Timing driven delay minimizing flow control
5. Stack–oriented tokenized command language
6. Distributed data (files) and distributed metadata (prefix hash

trie)
7. Apps in a sandboxed environment for displaying content



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o in a nutshell

net2o consists of the following 6 layers (implemented bottom up):

2. Path switched packets with 2n size writing into shared
memory buffers

3. Ephemeral key exchange and signatures with Ed25519,
symmetric authenticated encryption+hash+prng with Keccak,
symmetric block encryption with Threefish

4. Timing driven delay minimizing flow control
5. Stack–oriented tokenized command language
6. Distributed data (files) and distributed metadata (prefix hash

trie)
7. Apps in a sandboxed environment for displaying content



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o in a nutshell

net2o consists of the following 6 layers (implemented bottom up):

2. Path switched packets with 2n size writing into shared
memory buffers

3. Ephemeral key exchange and signatures with Ed25519,
symmetric authenticated encryption+hash+prng with Keccak,
symmetric block encryption with Threefish

4. Timing driven delay minimizing flow control
5. Stack–oriented tokenized command language
6. Distributed data (files) and distributed metadata (prefix hash

trie)
7. Apps in a sandboxed environment for displaying content



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o in a nutshell

net2o consists of the following 6 layers (implemented bottom up):

2. Path switched packets with 2n size writing into shared
memory buffers

3. Ephemeral key exchange and signatures with Ed25519,
symmetric authenticated encryption+hash+prng with Keccak,
symmetric block encryption with Threefish

4. Timing driven delay minimizing flow control
5. Stack–oriented tokenized command language
6. Distributed data (files) and distributed metadata (prefix hash

trie)
7. Apps in a sandboxed environment for displaying content



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o in a nutshell

net2o consists of the following 6 layers (implemented bottom up):

2. Path switched packets with 2n size writing into shared
memory buffers

3. Ephemeral key exchange and signatures with Ed25519,
symmetric authenticated encryption+hash+prng with Keccak,
symmetric block encryption with Threefish

4. Timing driven delay minimizing flow control
5. Stack–oriented tokenized command language
6. Distributed data (files) and distributed metadata (prefix hash

trie)
7. Apps in a sandboxed environment for displaying content



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o in a nutshell

net2o consists of the following 6 layers (implemented bottom up):

2. Path switched packets with 2n size writing into shared
memory buffers

3. Ephemeral key exchange and signatures with Ed25519,
symmetric authenticated encryption+hash+prng with Keccak,
symmetric block encryption with Threefish

4. Timing driven delay minimizing flow control
5. Stack–oriented tokenized command language
6. Distributed data (files) and distributed metadata (prefix hash

trie)
7. Apps in a sandboxed environment for displaying content



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Objectives

net2o’s design objectives are

• lightweight, fast, scalable
• easy to implement
• secure
• media capable
• works as overlay on current networks (UDP/IP), but can

replace the entire stack



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Objectives

net2o’s design objectives are

• lightweight, fast, scalable
• easy to implement
• secure
• media capable
• works as overlay on current networks (UDP/IP), but can

replace the entire stack



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Objectives

net2o’s design objectives are

• lightweight, fast, scalable
• easy to implement
• secure
• media capable
• works as overlay on current networks (UDP/IP), but can

replace the entire stack



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Objectives

net2o’s design objectives are

• lightweight, fast, scalable
• easy to implement
• secure
• media capable
• works as overlay on current networks (UDP/IP), but can

replace the entire stack



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Objectives

net2o’s design objectives are

• lightweight, fast, scalable
• easy to implement
• secure
• media capable
• works as overlay on current networks (UDP/IP), but can

replace the entire stack



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Objectives

net2o’s design objectives are

• lightweight, fast, scalable
• easy to implement
• secure
• media capable
• works as overlay on current networks (UDP/IP), but can

replace the entire stack



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Switching Packets, Routing Connections
• Switches are faster and easier to implement than routers
• Routing then is a combination of destination resolution and

routing calculation (destination path lookup)

Path Switching

• Take first n bits of path field and select destination
• Shift target address by n
• Insert bit-reversed source into the rear end of the path field to

mark the way back

• The receiver bit–flips the path field, and gets the return
address

• Easy handover possible



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Switching Packets, Routing Connections
• Switches are faster and easier to implement than routers
• Routing then is a combination of destination resolution and

routing calculation (destination path lookup)

Path Switching

• Take first n bits of path field and select destination
• Shift target address by n
• Insert bit-reversed source into the rear end of the path field to

mark the way back

• The receiver bit–flips the path field, and gets the return
address

• Easy handover possible



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Switching Packets, Routing Connections
• Switches are faster and easier to implement than routers
• Routing then is a combination of destination resolution and

routing calculation (destination path lookup)

Path Switching

• Take first n bits of path field and select destination
• Shift target address by n
• Insert bit-reversed source into the rear end of the path field to

mark the way back

• The receiver bit–flips the path field, and gets the return
address

• Easy handover possible



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Switching Packets, Routing Connections
• Switches are faster and easier to implement than routers
• Routing then is a combination of destination resolution and

routing calculation (destination path lookup)

Path Switching

• Take first n bits of path field and select destination
• Shift target address by n
• Insert bit-reversed source into the rear end of the path field to

mark the way back

• The receiver bit–flips the path field, and gets the return
address

• Easy handover possible



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Switching Packets, Routing Connections
• Switches are faster and easier to implement than routers
• Routing then is a combination of destination resolution and

routing calculation (destination path lookup)

Path Switching

• Take first n bits of path field and select destination
• Shift target address by n
• Insert bit-reversed source into the rear end of the path field to

mark the way back

• The receiver bit–flips the path field, and gets the return
address

• Easy handover possible



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Switching Packets, Routing Connections
• Switches are faster and easier to implement than routers
• Routing then is a combination of destination resolution and

routing calculation (destination path lookup)

Path Switching

• Take first n bits of path field and select destination
• Shift target address by n
• Insert bit-reversed source into the rear end of the path field to

mark the way back

• The receiver bit–flips the path field, and gets the return
address

• Easy handover possible



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Switching Packets, Routing Connections
• Switches are faster and easier to implement than routers
• Routing then is a combination of destination resolution and

routing calculation (destination path lookup)

Path Switching

• Take first n bits of path field and select destination
• Shift target address by n
• Insert bit-reversed source into the rear end of the path field to

mark the way back

• The receiver bit–flips the path field, and gets the return
address

• Easy handover possible



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Routing Algorithm

• A node publishes ISP switch+label in the DHT
• The ISP publishs peering switch+label in the DHT
• Assumption is a hierarchical network, so a recursive lookup

will give a good solution
• Splice the labels together, and you get a path



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Routing Algorithm

• A node publishes ISP switch+label in the DHT
• The ISP publishs peering switch+label in the DHT
• Assumption is a hierarchical network, so a recursive lookup

will give a good solution
• Splice the labels together, and you get a path



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Routing Algorithm

• A node publishes ISP switch+label in the DHT
• The ISP publishs peering switch+label in the DHT
• Assumption is a hierarchical network, so a recursive lookup

will give a good solution
• Splice the labels together, and you get a path



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Routing Algorithm

• A node publishes ISP switch+label in the DHT
• The ISP publishs peering switch+label in the DHT
• Assumption is a hierarchical network, so a recursive lookup

will give a good solution
• Splice the labels together, and you get a path



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why Source Routing
Three possible schemes

1. switched circuit (POTS, virtual: ATM, MPLS)
2. unique identifier (IP)
3. source routing

• Separation of network gear and computers: Fast, dumb,
stateless equipment for routing/switching

• The hierarchical topology is a derived “law of nature”: people
cluster together and connect clusters

• Attack vector is only bandwidth–based, and this can be
mitigated (see “fair routing” below)

• Routing slice is an implementation detail of each network
segment (i.e. is a unique identifier within each subnet)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why Source Routing
Three possible schemes

1. switched circuit (POTS, virtual: ATM, MPLS)
2. unique identifier (IP)
3. source routing

• Separation of network gear and computers: Fast, dumb,
stateless equipment for routing/switching

• The hierarchical topology is a derived “law of nature”: people
cluster together and connect clusters

• Attack vector is only bandwidth–based, and this can be
mitigated (see “fair routing” below)

• Routing slice is an implementation detail of each network
segment (i.e. is a unique identifier within each subnet)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why Source Routing
Three possible schemes

1. switched circuit (POTS, virtual: ATM, MPLS)
2. unique identifier (IP)
3. source routing

• Separation of network gear and computers: Fast, dumb,
stateless equipment for routing/switching

• The hierarchical topology is a derived “law of nature”: people
cluster together and connect clusters

• Attack vector is only bandwidth–based, and this can be
mitigated (see “fair routing” below)

• Routing slice is an implementation detail of each network
segment (i.e. is a unique identifier within each subnet)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why Source Routing
Three possible schemes

1. switched circuit (POTS, virtual: ATM, MPLS)
2. unique identifier (IP)
3. source routing

• Separation of network gear and computers: Fast, dumb,
stateless equipment for routing/switching

• The hierarchical topology is a derived “law of nature”: people
cluster together and connect clusters

• Attack vector is only bandwidth–based, and this can be
mitigated (see “fair routing” below)

• Routing slice is an implementation detail of each network
segment (i.e. is a unique identifier within each subnet)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why Source Routing
Three possible schemes

1. switched circuit (POTS, virtual: ATM, MPLS)
2. unique identifier (IP)
3. source routing

• Separation of network gear and computers: Fast, dumb,
stateless equipment for routing/switching

• The hierarchical topology is a derived “law of nature”: people
cluster together and connect clusters

• Attack vector is only bandwidth–based, and this can be
mitigated (see “fair routing” below)

• Routing slice is an implementation detail of each network
segment (i.e. is a unique identifier within each subnet)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Packet Format

Bytes Comment
Flags 2 priority, length, flow control flags
Path 16 Internet 1.0 terminology: “address”

Address 8 address in memory, ≈port+sequence
number

Data 64 ∗ 20..15 up to 2MB packet size, enough for the next
40 years

Chksum 16 cryptographic checksum

addressflag path data Chksum

QoS size res
version

broadcast

m
ulticast

resend~

b2b~
ack~

stateless



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Security: Indirect Attacks are Cheaper



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Exchange

ECC Elliptic Curve Cryptography has still only a generic
attack (i.e. can be considered “unscratched”, as the
attack uses a fundamental property of the problem),
and therefore 256 bit keys (32 bytes) have a strength
of 128 bits

Therefore the choice now is Ed25519, a variant of Curve25519
from Dan Bernstein that supports signatures, too. This is a
curve where the parameters are of high quality.
I use Ed25519 both for Diffie–Hellman–Exchange and signatures
with the same key; Peter Schwabe warned me that this might
be insecure in some circumstances and that they are working on
some recommendations how to do this securely.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Exchange

ECC Elliptic Curve Cryptography has still only a generic
attack (i.e. can be considered “unscratched”, as the
attack uses a fundamental property of the problem),
and therefore 256 bit keys (32 bytes) have a strength
of 128 bits

Therefore the choice now is Ed25519, a variant of Curve25519
from Dan Bernstein that supports signatures, too. This is a
curve where the parameters are of high quality.
I use Ed25519 both for Diffie–Hellman–Exchange and signatures
with the same key; Peter Schwabe warned me that this might
be insecure in some circumstances and that they are working on
some recommendations how to do this securely.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Exchange

ECC Elliptic Curve Cryptography has still only a generic
attack (i.e. can be considered “unscratched”, as the
attack uses a fundamental property of the problem),
and therefore 256 bit keys (32 bytes) have a strength
of 128 bits

Therefore the choice now is Ed25519, a variant of Curve25519
from Dan Bernstein that supports signatures, too. This is a
curve where the parameters are of high quality.
I use Ed25519 both for Diffie–Hellman–Exchange and signatures
with the same key; Peter Schwabe warned me that this might
be insecure in some circumstances and that they are working on
some recommendations how to do this securely.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Ephemeral Key Exchange+Validation

ska

sk1

skb

sk2

pk1

pka

pkb

pk2

Secret2

Secret1

enc dec *

*

enc

*

dec

Phase 2:

Identification

Key Exchange

*

Ephemeral

Key Exchange

Phase 1:

BobAlice



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Replacement
Problem with key revocation: you really want to replace your
compromised key; signing the revocation with the secret key is a
bad idea, because the secret key is compromised (the attacker
might be the source of the key replacement)

• Only the creator of the secret key can revoke it
• A thief of the secret key can’t (i.e. further information is

necessary)
• Revocation must present a trustworthy replacement key
• Third parties must trust both the revocation and the

replacement key without another trustworthy instance, i.e.
trusting only their communication partner

• Solution: “proof of creation”, i.e. you prove you made the key
with a separately stored secret



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Replacement
Problem with key revocation: you really want to replace your
compromised key; signing the revocation with the secret key is a
bad idea, because the secret key is compromised (the attacker
might be the source of the key replacement)

• Only the creator of the secret key can revoke it
• A thief of the secret key can’t (i.e. further information is

necessary)
• Revocation must present a trustworthy replacement key
• Third parties must trust both the revocation and the

replacement key without another trustworthy instance, i.e.
trusting only their communication partner

• Solution: “proof of creation”, i.e. you prove you made the key
with a separately stored secret



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Replacement
Problem with key revocation: you really want to replace your
compromised key; signing the revocation with the secret key is a
bad idea, because the secret key is compromised (the attacker
might be the source of the key replacement)

• Only the creator of the secret key can revoke it
• A thief of the secret key can’t (i.e. further information is

necessary)
• Revocation must present a trustworthy replacement key
• Third parties must trust both the revocation and the

replacement key without another trustworthy instance, i.e.
trusting only their communication partner

• Solution: “proof of creation”, i.e. you prove you made the key
with a separately stored secret



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Replacement
Problem with key revocation: you really want to replace your
compromised key; signing the revocation with the secret key is a
bad idea, because the secret key is compromised (the attacker
might be the source of the key replacement)

• Only the creator of the secret key can revoke it
• A thief of the secret key can’t (i.e. further information is

necessary)
• Revocation must present a trustworthy replacement key
• Third parties must trust both the revocation and the

replacement key without another trustworthy instance, i.e.
trusting only their communication partner

• Solution: “proof of creation”, i.e. you prove you made the key
with a separately stored secret



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Replacement
Problem with key revocation: you really want to replace your
compromised key; signing the revocation with the secret key is a
bad idea, because the secret key is compromised (the attacker
might be the source of the key replacement)

• Only the creator of the secret key can revoke it
• A thief of the secret key can’t (i.e. further information is

necessary)
• Revocation must present a trustworthy replacement key
• Third parties must trust both the revocation and the

replacement key without another trustworthy instance, i.e.
trusting only their communication partner

• Solution: “proof of creation”, i.e. you prove you made the key
with a separately stored secret



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Replacement
Problem with key revocation: you really want to replace your
compromised key; signing the revocation with the secret key is a
bad idea, because the secret key is compromised (the attacker
might be the source of the key replacement)

• Only the creator of the secret key can revoke it
• A thief of the secret key can’t (i.e. further information is

necessary)
• Revocation must present a trustworthy replacement key
• Third parties must trust both the revocation and the

replacement key without another trustworthy instance, i.e.
trusting only their communication partner

• Solution: “proof of creation”, i.e. you prove you made the key
with a separately stored secret



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Proof of Creation

• Create two 256 bit random numbers s1 and s2
• Create pubkeys p1 = base ∗ [s1] and p2 = base ∗ [s2]
• Compute [s] = [s1 ∗ p2] as ”work secret” and p = base ∗ [s],

the pubkey
• Publish p and p1, destroy s1 (no longer needed), keep s2 as

offline copy (e.g. on paper)
• To revoke a key, publish p2, which the recipient can validate

by p1 ∗ [p2] ≡ p.
• To proof possession of all secrets, sign new key with s2, s, and

snew



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Proof of Creation

• Create two 256 bit random numbers s1 and s2
• Create pubkeys p1 = base ∗ [s1] and p2 = base ∗ [s2]
• Compute [s] = [s1 ∗ p2] as ”work secret” and p = base ∗ [s],

the pubkey
• Publish p and p1, destroy s1 (no longer needed), keep s2 as

offline copy (e.g. on paper)
• To revoke a key, publish p2, which the recipient can validate

by p1 ∗ [p2] ≡ p.
• To proof possession of all secrets, sign new key with s2, s, and

snew



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Proof of Creation

• Create two 256 bit random numbers s1 and s2
• Create pubkeys p1 = base ∗ [s1] and p2 = base ∗ [s2]
• Compute [s] = [s1 ∗ p2] as ”work secret” and p = base ∗ [s],

the pubkey
• Publish p and p1, destroy s1 (no longer needed), keep s2 as

offline copy (e.g. on paper)
• To revoke a key, publish p2, which the recipient can validate

by p1 ∗ [p2] ≡ p.
• To proof possession of all secrets, sign new key with s2, s, and

snew



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Proof of Creation

• Create two 256 bit random numbers s1 and s2
• Create pubkeys p1 = base ∗ [s1] and p2 = base ∗ [s2]
• Compute [s] = [s1 ∗ p2] as ”work secret” and p = base ∗ [s],

the pubkey
• Publish p and p1, destroy s1 (no longer needed), keep s2 as

offline copy (e.g. on paper)
• To revoke a key, publish p2, which the recipient can validate

by p1 ∗ [p2] ≡ p.
• To proof possession of all secrets, sign new key with s2, s, and

snew



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Proof of Creation

• Create two 256 bit random numbers s1 and s2
• Create pubkeys p1 = base ∗ [s1] and p2 = base ∗ [s2]
• Compute [s] = [s1 ∗ p2] as ”work secret” and p = base ∗ [s],

the pubkey
• Publish p and p1, destroy s1 (no longer needed), keep s2 as

offline copy (e.g. on paper)
• To revoke a key, publish p2, which the recipient can validate

by p1 ∗ [p2] ≡ p.
• To proof possession of all secrets, sign new key with s2, s, and

snew



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Proof of Creation

• Create two 256 bit random numbers s1 and s2
• Create pubkeys p1 = base ∗ [s1] and p2 = base ∗ [s2]
• Compute [s] = [s1 ∗ p2] as ”work secret” and p = base ∗ [s],

the pubkey
• Publish p and p1, destroy s1 (no longer needed), keep s2 as

offline copy (e.g. on paper)
• To revoke a key, publish p2, which the recipient can validate

by p1 ∗ [p2] ≡ p.
• To proof possession of all secrets, sign new key with s2, s, and

snew



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel

protected AEAD operation (no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive

(hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent.

I use Keccak with r = 1024 and capacity c = 576 as
suggested by the Keccak authors.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel

protected AEAD operation (no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive

(hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent.

I use Keccak with r = 1024 and capacity c = 576 as
suggested by the Keccak authors.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel

protected AEAD operation (no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive

(hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent.

I use Keccak with r = 1024 and capacity c = 576 as
suggested by the Keccak authors.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel

protected AEAD operation (no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive

(hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent.

I use Keccak with r = 1024 and capacity c = 576 as
suggested by the Keccak authors.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel

protected AEAD operation (no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive

(hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent.

I use Keccak with r = 1024 and capacity c = 576 as
suggested by the Keccak authors.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel

protected AEAD operation (no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive

(hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent.

I use Keccak with r = 1024 and capacity c = 576 as
suggested by the Keccak authors.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Key Usage
All keys are one–time–use only!

C
h
k
s
u
m

B
lo

c
k
 4

B
lo

c
k
 0

C
h
k
s
u
m

C
h
k
s
u
m

B
lo

c
k
 1

C
h
k
s
u
m

B
lo

c
k
 2

C
h
k
s
u
m

B
lo

c
k
 3

Secret1 Secret2 IV key0 key1 key2 key3 key4

Data Map Master Key

rData Map Master Key

rCode Map Master Key

Code Map Master Key

D
u
p
le

x

D
u
p
le

x

D
u
p
le

x

D
u
p
le

x

D
u
p
le

x

Block keys

...

PRNG

PRNG



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Threefish

Keccak has one disadvantage: No ECB mode. Application for ECB
mode:

• Encryption of hash values for the DHT — to store key/value
pairs in a pubic DHT without revealing the content.

• For net2o–in–net2o tunnels (to be used for onion–routing), no
authentication and no IV is desirable, so use an ECB mode
algorithm.

• Strength >256 bits, tweaksable to make ECB mode more
secure (counter as tweak)

• SHA–3 finalist, so sufficiently good cryptanalysis



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Threefish

Keccak has one disadvantage: No ECB mode. Application for ECB
mode:

• Encryption of hash values for the DHT — to store key/value
pairs in a pubic DHT without revealing the content.

• For net2o–in–net2o tunnels (to be used for onion–routing), no
authentication and no IV is desirable, so use an ECB mode
algorithm.

• Strength >256 bits, tweaksable to make ECB mode more
secure (counter as tweak)

• SHA–3 finalist, so sufficiently good cryptanalysis



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Threefish

Keccak has one disadvantage: No ECB mode. Application for ECB
mode:

• Encryption of hash values for the DHT — to store key/value
pairs in a pubic DHT without revealing the content.

• For net2o–in–net2o tunnels (to be used for onion–routing), no
authentication and no IV is desirable, so use an ECB mode
algorithm.

• Strength >256 bits, tweaksable to make ECB mode more
secure (counter as tweak)

• SHA–3 finalist, so sufficiently good cryptanalysis



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Threefish

Keccak has one disadvantage: No ECB mode. Application for ECB
mode:

• Encryption of hash values for the DHT — to store key/value
pairs in a pubic DHT without revealing the content.

• For net2o–in–net2o tunnels (to be used for onion–routing), no
authentication and no IV is desirable, so use an ECB mode
algorithm.

• Strength >256 bits, tweaksable to make ECB mode more
secure (counter as tweak)

• SHA–3 finalist, so sufficiently good cryptanalysis



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Symmetric Crypto: Threefish

Keccak has one disadvantage: No ECB mode. Application for ECB
mode:

• Encryption of hash values for the DHT — to store key/value
pairs in a pubic DHT without revealing the content.

• For net2o–in–net2o tunnels (to be used for onion–routing), no
authentication and no IV is desirable, so use an ECB mode
algorithm.

• Strength >256 bits, tweaksable to make ECB mode more
secure (counter as tweak)

• SHA–3 finalist, so sufficiently good cryptanalysis



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Flow Control (Broken)
• TCP fills the buffer, until a packet has to be dropped, instead

of reducing rate before. Name of the symptom: “Buffer
bloat”. But buffering is essential for good network
performance.

Fill until

buffer overflows

Figure : Buffer Bloat



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Alternatives?
• LEDBAT tries to achieve a low, constant delay: Works, but

not good on fairness
• CurveCP’s flow control is still “a lot of research”
• Therefore, something new has to be done

Figure : That’s how proper flow control should look like



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Alternatives?
• LEDBAT tries to achieve a low, constant delay: Works, but

not good on fairness
• CurveCP’s flow control is still “a lot of research”
• Therefore, something new has to be done

Figure : That’s how proper flow control should look like



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Alternatives?
• LEDBAT tries to achieve a low, constant delay: Works, but

not good on fairness
• CurveCP’s flow control is still “a lot of research”
• Therefore, something new has to be done

Figure : That’s how proper flow control should look like



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o Flow Control

Figure : Measure the bottleneck using a burst of packets



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Client Measures, Server Sets Rate

Client recores the time of the first and last packet in a
burst, and calculates the achieved rate for received
packets, extrapolating to the achievable rate
including the dropped packets. This results in the
requested rate.

rate := ∆t ∗ burstlen
packets

Server would simply use this rate



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Client Measures, Server Sets Rate

Client recores the time of the first and last packet in a
burst, and calculates the achieved rate for received
packets, extrapolating to the achievable rate
including the dropped packets. This results in the
requested rate.

rate := ∆t ∗ burstlen
packets

Server would simply use this rate



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness
Fairness means that concurrent connections achieve about the
same data rate, sharing the same line in a fair way.

• Ideally, a router/switch would schedule buffered packets
round–robin, giving each connection a fair share of the
bandwidth (fair queuing). That would change the calculated
rate appropriately, and also be a big relief for current TCP
buffer bloat symptoms, as each connection would have its
private buffer to fill up.

• Unfortunately, routers use a single FIFO policy for all
connections

• Finding a sufficiently stable algorithm to provide fairness
• We want to adopt to new situations as fast as possible, there’s

no point in anything slow. Especially on wireless connections,
achievable rate changes are not only related to traffic.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness
Fairness means that concurrent connections achieve about the
same data rate, sharing the same line in a fair way.

• Ideally, a router/switch would schedule buffered packets
round–robin, giving each connection a fair share of the
bandwidth (fair queuing). That would change the calculated
rate appropriately, and also be a big relief for current TCP
buffer bloat symptoms, as each connection would have its
private buffer to fill up.

• Unfortunately, routers use a single FIFO policy for all
connections

• Finding a sufficiently stable algorithm to provide fairness
• We want to adopt to new situations as fast as possible, there’s

no point in anything slow. Especially on wireless connections,
achievable rate changes are not only related to traffic.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness
Fairness means that concurrent connections achieve about the
same data rate, sharing the same line in a fair way.

• Ideally, a router/switch would schedule buffered packets
round–robin, giving each connection a fair share of the
bandwidth (fair queuing). That would change the calculated
rate appropriately, and also be a big relief for current TCP
buffer bloat symptoms, as each connection would have its
private buffer to fill up.

• Unfortunately, routers use a single FIFO policy for all
connections

• Finding a sufficiently stable algorithm to provide fairness
• We want to adopt to new situations as fast as possible, there’s

no point in anything slow. Especially on wireless connections,
achievable rate changes are not only related to traffic.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness
Fairness means that concurrent connections achieve about the
same data rate, sharing the same line in a fair way.

• Ideally, a router/switch would schedule buffered packets
round–robin, giving each connection a fair share of the
bandwidth (fair queuing). That would change the calculated
rate appropriately, and also be a big relief for current TCP
buffer bloat symptoms, as each connection would have its
private buffer to fill up.

• Unfortunately, routers use a single FIFO policy for all
connections

• Finding a sufficiently stable algorithm to provide fairness
• We want to adopt to new situations as fast as possible, there’s

no point in anything slow. Especially on wireless connections,
achievable rate changes are not only related to traffic.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness
Fairness means that concurrent connections achieve about the
same data rate, sharing the same line in a fair way.

• Ideally, a router/switch would schedule buffered packets
round–robin, giving each connection a fair share of the
bandwidth (fair queuing). That would change the calculated
rate appropriately, and also be a big relief for current TCP
buffer bloat symptoms, as each connection would have its
private buffer to fill up.

• Unfortunately, routers use a single FIFO policy for all
connections

• Finding a sufficiently stable algorithm to provide fairness
• We want to adopt to new situations as fast as possible, there’s

no point in anything slow. Especially on wireless connections,
achievable rate changes are not only related to traffic.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o Flow Control — Fair Router

Figure : Fair queuing results in correct measurement of available
bandwidth



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

net2o Flow Control — FIFO Router

Figure : Unfair FIFO queuing results in twice the available bandwidth
calculated



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness I

• To improve stability of unfair queued packets, we need to
improve that P regulator (proportional to measured rate) to a
full PID regulator

• The integral part is the accumulated slack (in the buffer),
which we want to keep low, and the D part is
growing/reducing this slack from one measurement to the next

• We use both parts to decrease the sending rate, and thereby
achieve better fairness

• The I part is used to exponentially lengthen the rate ∆t with
increasing slack up to a maximum factor of 16.

sexp = 2
slack

T where T = max(10ms,max(slacks))



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness I

• To improve stability of unfair queued packets, we need to
improve that P regulator (proportional to measured rate) to a
full PID regulator

• The integral part is the accumulated slack (in the buffer),
which we want to keep low, and the D part is
growing/reducing this slack from one measurement to the next

• We use both parts to decrease the sending rate, and thereby
achieve better fairness

• The I part is used to exponentially lengthen the rate ∆t with
increasing slack up to a maximum factor of 16.

sexp = 2
slack

T where T = max(10ms,max(slacks))



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness I

• To improve stability of unfair queued packets, we need to
improve that P regulator (proportional to measured rate) to a
full PID regulator

• The integral part is the accumulated slack (in the buffer),
which we want to keep low, and the D part is
growing/reducing this slack from one measurement to the next

• We use both parts to decrease the sending rate, and thereby
achieve better fairness

• The I part is used to exponentially lengthen the rate ∆t with
increasing slack up to a maximum factor of 16.

sexp = 2
slack

T where T = max(10ms,max(slacks))



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness I

• To improve stability of unfair queued packets, we need to
improve that P regulator (proportional to measured rate) to a
full PID regulator

• The integral part is the accumulated slack (in the buffer),
which we want to keep low, and the D part is
growing/reducing this slack from one measurement to the next

• We use both parts to decrease the sending rate, and thereby
achieve better fairness

• The I part is used to exponentially lengthen the rate ∆t with
increasing slack up to a maximum factor of 16.

sexp = 2
slack

T where T = max(10ms,max(slacks))



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness I

• To improve stability of unfair queued packets, we need to
improve that P regulator (proportional to measured rate) to a
full PID regulator

• The integral part is the accumulated slack (in the buffer),
which we want to keep low, and the D part is
growing/reducing this slack from one measurement to the next

• We use both parts to decrease the sending rate, and thereby
achieve better fairness

• The I part is used to exponentially lengthen the rate ∆t with
increasing slack up to a maximum factor of 16.

sexp = 2
slack

T where T = max(10ms,max(slacks))



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness D
• To measure the differential term, we measure how much the

slack grows (a ∆t value) from the first to the last burst we do
for one measurement cycle (4 bursts by default, first packet to
first packet of each burst)

• This is multiplied by the total packets in flight (head of the
sender queue vs. acknowledged packet), divided by the
packets within the measured interval

• A low–pass filter is applied to the obtained D to prevent from
speeding up too fast, with one round trip delay as time
constant

• max(slacks)/10ms is used to determine how aggressive this
algorithm is

• Add the obtained ∆t both to the rate’s ∆t for one burst
sequence and wait that time before starting the next burst
sequence.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness D
• To measure the differential term, we measure how much the

slack grows (a ∆t value) from the first to the last burst we do
for one measurement cycle (4 bursts by default, first packet to
first packet of each burst)

• This is multiplied by the total packets in flight (head of the
sender queue vs. acknowledged packet), divided by the
packets within the measured interval

• A low–pass filter is applied to the obtained D to prevent from
speeding up too fast, with one round trip delay as time
constant

• max(slacks)/10ms is used to determine how aggressive this
algorithm is

• Add the obtained ∆t both to the rate’s ∆t for one burst
sequence and wait that time before starting the next burst
sequence.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness D
• To measure the differential term, we measure how much the

slack grows (a ∆t value) from the first to the last burst we do
for one measurement cycle (4 bursts by default, first packet to
first packet of each burst)

• This is multiplied by the total packets in flight (head of the
sender queue vs. acknowledged packet), divided by the
packets within the measured interval

• A low–pass filter is applied to the obtained D to prevent from
speeding up too fast, with one round trip delay as time
constant

• max(slacks)/10ms is used to determine how aggressive this
algorithm is

• Add the obtained ∆t both to the rate’s ∆t for one burst
sequence and wait that time before starting the next burst
sequence.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness D
• To measure the differential term, we measure how much the

slack grows (a ∆t value) from the first to the last burst we do
for one measurement cycle (4 bursts by default, first packet to
first packet of each burst)

• This is multiplied by the total packets in flight (head of the
sender queue vs. acknowledged packet), divided by the
packets within the measured interval

• A low–pass filter is applied to the obtained D to prevent from
speeding up too fast, with one round trip delay as time
constant

• max(slacks)/10ms is used to determine how aggressive this
algorithm is

• Add the obtained ∆t both to the rate’s ∆t for one burst
sequence and wait that time before starting the next burst
sequence.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Fairness D
• To measure the differential term, we measure how much the

slack grows (a ∆t value) from the first to the last burst we do
for one measurement cycle (4 bursts by default, first packet to
first packet of each burst)

• This is multiplied by the total packets in flight (head of the
sender queue vs. acknowledged packet), divided by the
packets within the measured interval

• A low–pass filter is applied to the obtained D to prevent from
speeding up too fast, with one round trip delay as time
constant

• max(slacks)/10ms is used to determine how aggressive this
algorithm is

• Add the obtained ∆t both to the rate’s ∆t for one burst
sequence and wait that time before starting the next burst
sequence.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

VDSL

Figure : One connection on a VDSL–50 line



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

VDSL, Congestion

Figure : One of four connections on a VDSL–50 line



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Unreliable Air Cable (WLAN)

Figure : Single connection using WLAN



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Unreliable Air Cable, Congestion

Figure : One of four connections using WLAN



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

LAN, 1GBE

Figure : Single connection using 1GBE



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

LAN 1GBE, Congestion (4 servers)

Figure : One of four connections using 1GBE



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

LAN 1GBE, Congestion (1 server)

Figure : One of four connections using 1GBE, fair queuing



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Data and Commands

• Data of several files/streams can be transferred interleaving,
so a single connection can do multiple things in parallel

• Commands are send in command blocks, i.e. there is not just
one command per block, but a sequence of commands!

• Commands are encoded like protobuf, i.e. 7 bits per byte, and
if the MSB of the byte is 1, there’s another byte to follow
(allowing arbitrary many commands)

• The command “machine” is a stack architecture.
• The command VM is object oriented, i.e. commands are

messages to objects
• The command interpreter itself is extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Data and Commands

• Data of several files/streams can be transferred interleaving,
so a single connection can do multiple things in parallel

• Commands are send in command blocks, i.e. there is not just
one command per block, but a sequence of commands!

• Commands are encoded like protobuf, i.e. 7 bits per byte, and
if the MSB of the byte is 1, there’s another byte to follow
(allowing arbitrary many commands)

• The command “machine” is a stack architecture.
• The command VM is object oriented, i.e. commands are

messages to objects
• The command interpreter itself is extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Data and Commands

• Data of several files/streams can be transferred interleaving,
so a single connection can do multiple things in parallel

• Commands are send in command blocks, i.e. there is not just
one command per block, but a sequence of commands!

• Commands are encoded like protobuf, i.e. 7 bits per byte, and
if the MSB of the byte is 1, there’s another byte to follow
(allowing arbitrary many commands)

• The command “machine” is a stack architecture.
• The command VM is object oriented, i.e. commands are

messages to objects
• The command interpreter itself is extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Data and Commands

• Data of several files/streams can be transferred interleaving,
so a single connection can do multiple things in parallel

• Commands are send in command blocks, i.e. there is not just
one command per block, but a sequence of commands!

• Commands are encoded like protobuf, i.e. 7 bits per byte, and
if the MSB of the byte is 1, there’s another byte to follow
(allowing arbitrary many commands)

• The command “machine” is a stack architecture.
• The command VM is object oriented, i.e. commands are

messages to objects
• The command interpreter itself is extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Data and Commands

• Data of several files/streams can be transferred interleaving,
so a single connection can do multiple things in parallel

• Commands are send in command blocks, i.e. there is not just
one command per block, but a sequence of commands!

• Commands are encoded like protobuf, i.e. 7 bits per byte, and
if the MSB of the byte is 1, there’s another byte to follow
(allowing arbitrary many commands)

• The command “machine” is a stack architecture.
• The command VM is object oriented, i.e. commands are

messages to objects
• The command interpreter itself is extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Data and Commands

• Data of several files/streams can be transferred interleaving,
so a single connection can do multiple things in parallel

• Commands are send in command blocks, i.e. there is not just
one command per block, but a sequence of commands!

• Commands are encoded like protobuf, i.e. 7 bits per byte, and
if the MSB of the byte is 1, there’s another byte to follow
(allowing arbitrary many commands)

• The command “machine” is a stack architecture.
• The command VM is object oriented, i.e. commands are

messages to objects
• The command interpreter itself is extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Example: Download three files

reading three files

0 file-id "net2o.fs" 0
open-file get-size get-stat endwith

1 file-id "data/2011-05-13_11-26-57-small.jpg" 0
open-file get-size get-stat endwith

2 file-id "data/2011-05-20_17-01-12-small.jpg" 0
open-file get-size get-stat endwith



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Reading Files: Reply

reading three files: replies

0 file-id 12B9A set-size
138D607CB83D0F06 1A4 set-stat endwith

1 file-id 9C65C set-size
13849CAE1F3B6EA8 1A4 set-stat endwith

2 file-id 9D240 set-size
13849CAE2643FDCC 1A4 set-stat endwith



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Basics

• Five data types: Integer (64 bits signed+unsigned), flag,
string (generic byte array), IEEE double float, objects

• Instructions and data encoding derived from Protobuf (7 bits
per byte, MSB=1 means “data continues”, most significant
part first)

• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and

commands
• oswap to transfer the current object to the object stack, to be

inserted in the outer object
• words for reflection (words are listed with token number,

identifier and stack effect to make automatic bindigs possible)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Basics

• Five data types: Integer (64 bits signed+unsigned), flag,
string (generic byte array), IEEE double float, objects

• Instructions and data encoding derived from Protobuf (7 bits
per byte, MSB=1 means “data continues”, most significant
part first)

• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and

commands
• oswap to transfer the current object to the object stack, to be

inserted in the outer object
• words for reflection (words are listed with token number,

identifier and stack effect to make automatic bindigs possible)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Basics

• Five data types: Integer (64 bits signed+unsigned), flag,
string (generic byte array), IEEE double float, objects

• Instructions and data encoding derived from Protobuf (7 bits
per byte, MSB=1 means “data continues”, most significant
part first)

• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and

commands
• oswap to transfer the current object to the object stack, to be

inserted in the outer object
• words for reflection (words are listed with token number,

identifier and stack effect to make automatic bindigs possible)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Basics

• Five data types: Integer (64 bits signed+unsigned), flag,
string (generic byte array), IEEE double float, objects

• Instructions and data encoding derived from Protobuf (7 bits
per byte, MSB=1 means “data continues”, most significant
part first)

• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and

commands
• oswap to transfer the current object to the object stack, to be

inserted in the outer object
• words for reflection (words are listed with token number,

identifier and stack effect to make automatic bindigs possible)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Basics

• Five data types: Integer (64 bits signed+unsigned), flag,
string (generic byte array), IEEE double float, objects

• Instructions and data encoding derived from Protobuf (7 bits
per byte, MSB=1 means “data continues”, most significant
part first)

• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and

commands
• oswap to transfer the current object to the object stack, to be

inserted in the outer object
• words for reflection (words are listed with token number,

identifier and stack effect to make automatic bindigs possible)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Basics

• Five data types: Integer (64 bits signed+unsigned), flag,
string (generic byte array), IEEE double float, objects

• Instructions and data encoding derived from Protobuf (7 bits
per byte, MSB=1 means “data continues”, most significant
part first)

• Four stacks: integer, float, objects, strings
• endwith and endcmd for ending object message blocks and

commands
• oswap to transfer the current object to the object stack, to be

inserted in the outer object
• words for reflection (words are listed with token number,

identifier and stack effect to make automatic bindigs possible)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why binary encoding?

• Faster and simpler to parse (simpler means smaller attack
vector)

• Ability to enter commands on the fly in text form through a
frontend interpreter still exists

• Debugging with a de–tokenizer is also very easy
• Object–oriented approach makes writing application–specific

logic extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why binary encoding?

• Faster and simpler to parse (simpler means smaller attack
vector)

• Ability to enter commands on the fly in text form through a
frontend interpreter still exists

• Debugging with a de–tokenizer is also very easy
• Object–oriented approach makes writing application–specific

logic extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why binary encoding?

• Faster and simpler to parse (simpler means smaller attack
vector)

• Ability to enter commands on the fly in text form through a
frontend interpreter still exists

• Debugging with a de–tokenizer is also very easy
• Object–oriented approach makes writing application–specific

logic extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why binary encoding?

• Faster and simpler to parse (simpler means smaller attack
vector)

• Ability to enter commands on the fly in text form through a
frontend interpreter still exists

• Debugging with a de–tokenizer is also very easy
• Object–oriented approach makes writing application–specific

logic extremely simple



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why a programming language as data?
Lemma: every glue logic will become Turing complete

• Implement only the things you need — but you shouldn’t have
to implement more than one generic interpreter

• Typical idea of sending remote procedure calls: serialize the
entire object (with subobjects), and call a function on that
object

• Net2o idea (derived from ONF): Keep the entire object
synchronized by sending only the changes to it — these
changes are simple messages (setters)

• This allows multi–message passing, and reduces latency



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why a programming language as data?
Lemma: every glue logic will become Turing complete

• Implement only the things you need — but you shouldn’t have
to implement more than one generic interpreter

• Typical idea of sending remote procedure calls: serialize the
entire object (with subobjects), and call a function on that
object

• Net2o idea (derived from ONF): Keep the entire object
synchronized by sending only the changes to it — these
changes are simple messages (setters)

• This allows multi–message passing, and reduces latency



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why a programming language as data?
Lemma: every glue logic will become Turing complete

• Implement only the things you need — but you shouldn’t have
to implement more than one generic interpreter

• Typical idea of sending remote procedure calls: serialize the
entire object (with subobjects), and call a function on that
object

• Net2o idea (derived from ONF): Keep the entire object
synchronized by sending only the changes to it — these
changes are simple messages (setters)

• This allows multi–message passing, and reduces latency



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why a programming language as data?
Lemma: every glue logic will become Turing complete

• Implement only the things you need — but you shouldn’t have
to implement more than one generic interpreter

• Typical idea of sending remote procedure calls: serialize the
entire object (with subobjects), and call a function on that
object

• Net2o idea (derived from ONF): Keep the entire object
synchronized by sending only the changes to it — these
changes are simple messages (setters)

• This allows multi–message passing, and reduces latency



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Security
Lemma: every sufficiently complex format can be exploited

Therefore stick to a very simple format, i.e.: simplify and factor
the code

Interpreter (pseudocode)

get_cmd: p -> p cmd
cmd = *p++;

n2cmd: n -> call
call = o ? token_table[n] : setup_table[n];

cmd_dispatch: p -> p
p, cmd = get_cmd(p);
invoke(n2cmd(n));

cmd-loop: p -> void
do { p = cmd-dispatch(p);
} while(len(p) > 0)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Security
Lemma: every sufficiently complex format can be exploited

Therefore stick to a very simple format, i.e.: simplify and factor
the code

Interpreter (pseudocode)

get_cmd: p -> p cmd
cmd = *p++;

n2cmd: n -> call
call = o ? token_table[n] : setup_table[n];

cmd_dispatch: p -> p
p, cmd = get_cmd(p);
invoke(n2cmd(n));

cmd-loop: p -> void
do { p = cmd-dispatch(p);
} while(len(p) > 0)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Distributed Data

• Following the “everything is a file” principle, every data object
is a file

• Data objects are accessed by their hash. The associated
metadata are “tags”

• Metadata is organized as a distributed prefix hash tree
• Efficient distribution of data is important!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Distributed Data

• Following the “everything is a file” principle, every data object
is a file

• Data objects are accessed by their hash. The associated
metadata are “tags”

• Metadata is organized as a distributed prefix hash tree
• Efficient distribution of data is important!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Distributed Data

• Following the “everything is a file” principle, every data object
is a file

• Data objects are accessed by their hash. The associated
metadata are “tags”

• Metadata is organized as a distributed prefix hash tree
• Efficient distribution of data is important!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Distributed Data

• Following the “everything is a file” principle, every data object
is a file

• Data objects are accessed by their hash. The associated
metadata are “tags”

• Metadata is organized as a distributed prefix hash tree
• Efficient distribution of data is important!



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Tree Distribution Network

root

Figure : Avalanche distribution with quad–tree of depth 2



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Possible Performance
• Trees with a bigger base reduce latency. Example: To transfer

a Justin Bieber tweet to 50 million followers, a binary tree
needs 25.5 hops on average, a quad–tree 12.8 hops, and an
oct–tree 8.5 hops.

• A typical domestic (inside e.g. Germany) hop–to–hop time is
just 20ms. International hops can be in the order of 250ms.
Assuming there is only one international hop in the chain, the
latency to distribute Justin Bieber’s babbling is typically just
500ms in a quad–tree.

• Rule of thumb: bandwidth = latency , i.e. if it takes 20ms
from hop to hop, each node should replicate data for 20ms —
if we make the tree wider, the linear effort of replicating data
will dominate transfer time, if we make the tree more narrow,
the hop–to–hop time will dominate.

• The tree–like graph greatly reduces the number of nodes to
know



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Possible Performance
• Trees with a bigger base reduce latency. Example: To transfer

a Justin Bieber tweet to 50 million followers, a binary tree
needs 25.5 hops on average, a quad–tree 12.8 hops, and an
oct–tree 8.5 hops.

• A typical domestic (inside e.g. Germany) hop–to–hop time is
just 20ms. International hops can be in the order of 250ms.
Assuming there is only one international hop in the chain, the
latency to distribute Justin Bieber’s babbling is typically just
500ms in a quad–tree.

• Rule of thumb: bandwidth = latency , i.e. if it takes 20ms
from hop to hop, each node should replicate data for 20ms —
if we make the tree wider, the linear effort of replicating data
will dominate transfer time, if we make the tree more narrow,
the hop–to–hop time will dominate.

• The tree–like graph greatly reduces the number of nodes to
know



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Possible Performance
• Trees with a bigger base reduce latency. Example: To transfer

a Justin Bieber tweet to 50 million followers, a binary tree
needs 25.5 hops on average, a quad–tree 12.8 hops, and an
oct–tree 8.5 hops.

• A typical domestic (inside e.g. Germany) hop–to–hop time is
just 20ms. International hops can be in the order of 250ms.
Assuming there is only one international hop in the chain, the
latency to distribute Justin Bieber’s babbling is typically just
500ms in a quad–tree.

• Rule of thumb: bandwidth = latency , i.e. if it takes 20ms
from hop to hop, each node should replicate data for 20ms —
if we make the tree wider, the linear effort of replicating data
will dominate transfer time, if we make the tree more narrow,
the hop–to–hop time will dominate.

• The tree–like graph greatly reduces the number of nodes to
know



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Possible Performance
• Trees with a bigger base reduce latency. Example: To transfer

a Justin Bieber tweet to 50 million followers, a binary tree
needs 25.5 hops on average, a quad–tree 12.8 hops, and an
oct–tree 8.5 hops.

• A typical domestic (inside e.g. Germany) hop–to–hop time is
just 20ms. International hops can be in the order of 250ms.
Assuming there is only one international hop in the chain, the
latency to distribute Justin Bieber’s babbling is typically just
500ms in a quad–tree.

• Rule of thumb: bandwidth = latency , i.e. if it takes 20ms
from hop to hop, each node should replicate data for 20ms —
if we make the tree wider, the linear effort of replicating data
will dominate transfer time, if we make the tree more narrow,
the hop–to–hop time will dominate.

• The tree–like graph greatly reduces the number of nodes to
know



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Distributed Hashes

• Most DHT approaches have poor performance
• Still working out what is both simple and fast
• Model: Directory servers know how stores which subset of the

hashes
• Replicated servers send updates through a distribution tree

(low latency mirroring)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Distributed Hashes

• Most DHT approaches have poor performance
• Still working out what is both simple and fast
• Model: Directory servers know how stores which subset of the

hashes
• Replicated servers send updates through a distribution tree

(low latency mirroring)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Distributed Hashes

• Most DHT approaches have poor performance
• Still working out what is both simple and fast
• Model: Directory servers know how stores which subset of the

hashes
• Replicated servers send updates through a distribution tree

(low latency mirroring)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Distributed Hashes

• Most DHT approaches have poor performance
• Still working out what is both simple and fast
• Model: Directory servers know how stores which subset of the

hashes
• Replicated servers send updates through a distribution tree

(low latency mirroring)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Content or Apps?

• The current web is defined by content — web apps
(JavaScript) are an afterthough

• Therefore, the application logic is usually on the server side
• This doesn’t work for a P2P network!
• Content is structured text, images, videos, music, etc.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Content or Apps?

• The current web is defined by content — web apps
(JavaScript) are an afterthough

• Therefore, the application logic is usually on the server side
• This doesn’t work for a P2P network!
• Content is structured text, images, videos, music, etc.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Content or Apps?

• The current web is defined by content — web apps
(JavaScript) are an afterthough

• Therefore, the application logic is usually on the server side
• This doesn’t work for a P2P network!
• Content is structured text, images, videos, music, etc.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Content or Apps?

• The current web is defined by content — web apps
(JavaScript) are an afterthough

• Therefore, the application logic is usually on the server side
• This doesn’t work for a P2P network!
• Content is structured text, images, videos, music, etc.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

App–Centric World

• There’s a phenomenon I call “Turing creep”: Every sufficiently
complex system contains a user–accessible Turing–complete
language

• Corollary: Every efficient sufficiently complex system can
execute native machine code

• The application logic is to present the data; data itself is as
above: structured text, images, videos, music, etc.

• Executing (especially efficient) code from the net raises
obvious questions about security



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

App–Centric World

• There’s a phenomenon I call “Turing creep”: Every sufficiently
complex system contains a user–accessible Turing–complete
language

• Corollary: Every efficient sufficiently complex system can
execute native machine code

• The application logic is to present the data; data itself is as
above: structured text, images, videos, music, etc.

• Executing (especially efficient) code from the net raises
obvious questions about security



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

App–Centric World

• There’s a phenomenon I call “Turing creep”: Every sufficiently
complex system contains a user–accessible Turing–complete
language

• Corollary: Every efficient sufficiently complex system can
execute native machine code

• The application logic is to present the data; data itself is as
above: structured text, images, videos, music, etc.

• Executing (especially efficient) code from the net raises
obvious questions about security



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

App–Centric World

• There’s a phenomenon I call “Turing creep”: Every sufficiently
complex system contains a user–accessible Turing–complete
language

• Corollary: Every efficient sufficiently complex system can
execute native machine code

• The application logic is to present the data; data itself is as
above: structured text, images, videos, music, etc.

• Executing (especially efficient) code from the net raises
obvious questions about security



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to securely execute code?
There are several options tried; as usual, things are broken:

1. Execute code in a controlled secure VM, see for example Java.
This is broken by design, as securing something from the
inside doesn’t work.

2. Execute code in a sandbox. This has shown as more robust,
depending on how complex the outside of the sandbox is.

3. Public inspection of code. This is how the open source world
works, but the underhanded C contest shows that inspection
is tricky.

4. Scan for known evil code. This is the security industry’s
approach, and it is not working.

5. Code signing can work together with public inspection — but
using it for accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to securely execute code?
There are several options tried; as usual, things are broken:

1. Execute code in a controlled secure VM, see for example Java.
This is broken by design, as securing something from the
inside doesn’t work.

2. Execute code in a sandbox. This has shown as more robust,
depending on how complex the outside of the sandbox is.

3. Public inspection of code. This is how the open source world
works, but the underhanded C contest shows that inspection
is tricky.

4. Scan for known evil code. This is the security industry’s
approach, and it is not working.

5. Code signing can work together with public inspection — but
using it for accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to securely execute code?
There are several options tried; as usual, things are broken:

1. Execute code in a controlled secure VM, see for example Java.
This is broken by design, as securing something from the
inside doesn’t work.

2. Execute code in a sandbox. This has shown as more robust,
depending on how complex the outside of the sandbox is.

3. Public inspection of code. This is how the open source world
works, but the underhanded C contest shows that inspection
is tricky.

4. Scan for known evil code. This is the security industry’s
approach, and it is not working.

5. Code signing can work together with public inspection — but
using it for accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to securely execute code?
There are several options tried; as usual, things are broken:

1. Execute code in a controlled secure VM, see for example Java.
This is broken by design, as securing something from the
inside doesn’t work.

2. Execute code in a sandbox. This has shown as more robust,
depending on how complex the outside of the sandbox is.

3. Public inspection of code. This is how the open source world
works, but the underhanded C contest shows that inspection
is tricky.

4. Scan for known evil code. This is the security industry’s
approach, and it is not working.

5. Code signing can work together with public inspection — but
using it for accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to securely execute code?
There are several options tried; as usual, things are broken:

1. Execute code in a controlled secure VM, see for example Java.
This is broken by design, as securing something from the
inside doesn’t work.

2. Execute code in a sandbox. This has shown as more robust,
depending on how complex the outside of the sandbox is.

3. Public inspection of code. This is how the open source world
works, but the underhanded C contest shows that inspection
is tricky.

4. Scan for known evil code. This is the security industry’s
approach, and it is not working.

5. Code signing can work together with public inspection — but
using it for accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to securely execute code?
There are several options tried; as usual, things are broken:

1. Execute code in a controlled secure VM, see for example Java.
This is broken by design, as securing something from the
inside doesn’t work.

2. Execute code in a sandbox. This has shown as more robust,
depending on how complex the outside of the sandbox is.

3. Public inspection of code. This is how the open source world
works, but the underhanded C contest shows that inspection
is tricky.

4. Scan for known evil code. This is the security industry’s
approach, and it is not working.

5. Code signing can work together with public inspection — but
using it for accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to securely execute code?
There are several options tried; as usual, things are broken:

1. Execute code in a controlled secure VM, see for example Java.
This is broken by design, as securing something from the
inside doesn’t work.

2. Execute code in a sandbox. This has shown as more robust,
depending on how complex the outside of the sandbox is.

3. Public inspection of code. This is how the open source world
works, but the underhanded C contest shows that inspection
is tricky.

4. Scan for known evil code. This is the security industry’s
approach, and it is not working.

5. Code signing can work together with public inspection — but
using it for accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Formats&Requirements
How to display things

GPU

Text

Videos

utf−8,markup

OpenType

mkv, h264

O
p
e
n
G

L

Input Output

Font
Glyphs

Texture

S
c
re

e
n

S
p
e
a
k
e
r

Music

png, jpg, h264 stills

Pictures

mp3,AAC, vorbis, opus

Keyboard

Camera

Camera

Microphone

Texture

Texture

Formats Elements

render

typeset

extract

extract

extract



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why OpenGL?
OpenGL can do everything

OpenGL renders:

1. Triangles, lines, points — simple components
2. Textures and gradients
3. and uses shader programs — the most powerful thing in

OpenGL from 2.0.

Real requirement: visualization of any data. OpenGL can do that.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why OpenGL?
OpenGL can do everything

OpenGL renders:

1. Triangles, lines, points — simple components
2. Textures and gradients
3. and uses shader programs — the most powerful thing in

OpenGL from 2.0.

Real requirement: visualization of any data. OpenGL can do that.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why OpenGL?
OpenGL can do everything

OpenGL renders:

1. Triangles, lines, points — simple components
2. Textures and gradients
3. and uses shader programs — the most powerful thing in

OpenGL from 2.0.

Real requirement: visualization of any data. OpenGL can do that.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why OpenGL?
OpenGL can do everything

OpenGL renders:

1. Triangles, lines, points — simple components
2. Textures and gradients
3. and uses shader programs — the most powerful thing in

OpenGL from 2.0.

Real requirement: visualization of any data. OpenGL can do that.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Why OpenGL?
OpenGL can do everything

OpenGL renders:

1. Triangles, lines, points — simple components
2. Textures and gradients
3. and uses shader programs — the most powerful thing in

OpenGL from 2.0.

Real requirement: visualization of any data. OpenGL can do that.



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to connect the media?
Lemma: every glue logic will become Turing complete

• currently used glue: HTML+CSS+JavaScript
• containers with Flash, Java, ActiveX, PDF, Google’s NaCl…
• conclusion: use a powerful tool right from start!
• browser: run–time and development tool for applications



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to connect the media?
Lemma: every glue logic will become Turing complete

• currently used glue: HTML+CSS+JavaScript
• containers with Flash, Java, ActiveX, PDF, Google’s NaCl…
• conclusion: use a powerful tool right from start!
• browser: run–time and development tool for applications



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to connect the media?
Lemma: every glue logic will become Turing complete

• currently used glue: HTML+CSS+JavaScript
• containers with Flash, Java, ActiveX, PDF, Google’s NaCl…
• conclusion: use a powerful tool right from start!
• browser: run–time and development tool for applications



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

How to connect the media?
Lemma: every glue logic will become Turing complete

• currently used glue: HTML+CSS+JavaScript
• containers with Flash, Java, ActiveX, PDF, Google’s NaCl…
• conclusion: use a powerful tool right from start!
• browser: run–time and development tool for applications



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Frameworks

• libsoil for images (PNG+JPEG loading into a texture)
• freetype-gl for fonts (TrueType/OpenType into a texture)
• OpenMAX on Android, gstreamer on Linux: videos into a

texture
• MINOΣ2: Lightweight OpenGL–based widget library in Forth

(still a lot of work in progress)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Frameworks

• libsoil for images (PNG+JPEG loading into a texture)
• freetype-gl for fonts (TrueType/OpenType into a texture)
• OpenMAX on Android, gstreamer on Linux: videos into a

texture
• MINOΣ2: Lightweight OpenGL–based widget library in Forth

(still a lot of work in progress)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Frameworks

• libsoil for images (PNG+JPEG loading into a texture)
• freetype-gl for fonts (TrueType/OpenType into a texture)
• OpenMAX on Android, gstreamer on Linux: videos into a

texture
• MINOΣ2: Lightweight OpenGL–based widget library in Forth

(still a lot of work in progress)



Motivation Topology Encryption Flow Control Commands Distributed Data Applications

Frameworks

• libsoil for images (PNG+JPEG loading into a texture)
• freetype-gl for fonts (TrueType/OpenType into a texture)
• OpenMAX on Android, gstreamer on Linux: videos into a

texture
• MINOΣ2: Lightweight OpenGL–based widget library in Forth

(still a lot of work in progress)



Appendix

For Further Reading I

Bernd Paysan
net2o source repository and wiki
http://fossil.net2o.de/net2o

Health & Safety Executive HSE – UK
Out of control, 2nd edition 2003
http://www.hse.gov.uk/pubns/priced/hsg238.pdf

Martin Croxford and Dr. Roderick Chapman
Correctness by Construction: A Manifesto for High-Integrity
Software
http://www.crosstalkonline.org/storage/
issue-archives/2005/200512/200512-Croxford.pdf

http://fossil.net2o.de/net2o
http://www.hse.gov.uk/pubns/priced/hsg238.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200512/200512-Croxford.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200512/200512-Croxford.pdf

	Motivation
	Topology
	Low–Overhead Packet Format

	Encryption
	Key Exchange
	Symmetric Crypto

	Flow Control
	Commands
	Distributed Data
	Applications
	Apps in a Sandbox
	API Basics

	Appendix

