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Somebody Broke the Internet…

• My thoughts about reinventing the Internet started in 2005. Yes, in 2005.
• Things broken in 2005: IE6 won the browser war, Windows XP “naked” on the

Internet was infected within 30 seconds with Sasser…
• Back then I had a new responsibility: do the IT of my (former) employer on top of

the IC design duties.
• 1000 competing protocols and standards for 100 things, none of them really good…
• Then we got Facebook and Cloud computing…
• Fast forward: in June 2013 Edward Snowden revealed that it’s worse than the

worst conspiracy theory
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The Problem of 1000 Standards



Solution: Start from Scratch
Pretty radical step

What to keep from the current Internet, and what to throw away:

The Good Packet–oriented protocol, open and free standards, connect everybody
with everybody else

The Bad Unencrypted by default, not enough addresses in IPv4, very slow
adaption of IPv6, Postel principle leads to pretty bad implementations

The Ugly Complex protocol stacks requires lots of resources to be fast, layering
violations e.g. in encryption, many protocols doing similar stuff
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Requirements
Scalability Must work well with low and high bandwidths, loose and tightly coupled

systems, few and many hosts connected together over short to far
distances.

Easy to implement Must work with a minimum of effort, must allow small and cheap
devices to connect. One idea is to replace “busses” like USB or even
Display Port with LAN links.

Security Users want authentication and authorization, but also anonymity and
privacy. Firewalls and similar gatekeepers (load balancers, etc.) are
common.

Media capable This requires real–time capabilities, maybe pre–allocated bandwidth
and other QoS features, end-to-end.

Transparency Must be able to work together with other networks (especially Internet
1.0, using UDP).
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My Background

• I’ve done hardware development from analog to digital, and software development
from embedded control, compilers to GUIs

• I therefore think I can comprehend an network stack from top to bottom
• I hate bloated, complex solutions, and I like simple, elegant ones
• The rule #1 of empowering the strong is “If you want it done right, you have to

do it yourself”
• Avoid unnecessary abstractions: Abstractions serve a purpose, they are not a

value of their own
• I like to program in Forth, as this is simple, elegant, malleable, and close to

hardware
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This is a lot of Research

My usual approach is:

1 Look at what’s out there
2 Evaluate or at least judge it
3 Conclude that it is broken
4 Go back to rule #1: “If you want it done right, you have to do it yourself”

Sometimes, there’s something out there that does work, though.
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Abstractions

• Network: Lines connected by switches
• Nodes: shared memory buffers — remote write, local read (of course, the network

stack can only access the memory that it is assigned to!)
• Separation of commands and (bulk) data packets
• Everything is a file — with metadata (“tags”) in a hash table, everyone is a key

(with metadata)
• Event–driven design: command packets are executed remotely and drive the

protocol
• P2P: all nodes are equal, no client–server distinction, content–oriented file

“objects”
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net2o in a nutshell

net2o consists of the following 6 layers:

2 Path switched packets with 2n size writing into shared memory buffers
3 Ephemeral key exchange and signatures with Ed25519, symmetric authenticated

encryption+hash+prng with Keccak
4 Timing driven delay minimizing flow control
5 Stack–oriented tokenized command language
6 Distributed data (files) and distributed metadata (prefix hash trie)
7 Apps in a sandboxed environment for displaying content
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Switching Packets, Routing Connections
• Switches are faster and easier to implement than routers — LANs (Ethernet) and

backbones (MPLS) already use switching; use the concept of MPLS label stacks
to use switching everywhere

• Routing then is a combination of DNS–like destination resolution and routing
calculation (destination path lookup)

Path Switching

• Take first n bits of path field and select destination
• Shift target address by n
• Insert bit-reversed source into the rear end of the path field to mark the way back

• The receiver bit–flips the path field, and gets the return address
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Packet Format

Bytes Comment
Flags 2 priority, length, flow control flags
Path 16 Internet 1.0 terminology: “address”

Address 8 address in memory, ≈port+sequence number
Data 64 ∗ 20..15 up to 2MB packet size, enough for the next 40 years

Chksum 16 cryptographic checksum

addressflag path data Chksum



Handover

• Typical problem in our mobile world: Devices hop from one network into another
• To avoid connection loss, you need a handover
• net2o handover works with the assumption that properly authenticated packets

are ok, and then accepts a change in the return path
• The remaining problem are two simultaneous handovers, and the suggestion

therefore is: Keep using both networks for the transition period.
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Routing Example (added for cjdns)

Assumption: Somewhat hierarchical structure: backbones, ISPs, LANs.

• My symbolic path to a backbone: laptop.net2o.1und1.level3
• Destination’s path to a backbone: foobar.webhoster.bay-net.alter-net
• Connect paths together (reverse second):

laptop.net2o.1und1.level3.alter-net.bay-net.webhoster.foobar
• Neighboring entities know the path from one to the other, e.g. “1und1” knows

how to connect “net2o” to “level3”, so you ask them (and cache the result in the
DHT)

• Splice the labels together, and you get a path:
1010 || 1101.0001.0101.1000.1011.0011 || 0110.1010 || 0111.1010 || 1010.0010.0001.1001.1010.0100 ||
0110.1011.0111
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Why Source Routing
Three possible schemes

1 switched circuit (POTS, virtual: ATM, MPLS)
2 unique identifier (IP)
3 source routing

• Separation of network gear and computers: Fast, dumb, stateless equipment for
routing/switching

• The hierarchical topology is a derived “law of nature”: people cluster together and
connect clusters

• Attack vector is only bandwidth–based, and this can be mitigated (see “fair
routing” below)

• Routing slice is an implementation detail of each network segment (i.e. is a
unique identifier within each subnet)
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Security: Indirect Attacks are Cheaper



Key Exchange
Evaluation of encryption algorithms

RSA Pubkeys for reasonable strength are 4kbit or more; factoring is no longer
“that hard”; further breakthroughs can be expected (RSA challenge
withdrew the prices). See “the year on crypto” presentation from djb et
al for more worrying stuff. 4kbit is 512 bytes, for the session invocation
protocol this is above the ∼1kB limit I’ve on current Internet.

Diffie–Hellman Key strength to length relation is about the same as with RSA, so the
same problem applies. Breakthroughs require non–linear expansion of key
size; archived encryption can be decrypted later

ECC Elliptic Curve Cryptography has still only a generic attack (i.e. can be
considered “unscratched”, as the attack uses a fundamental property of
the problem), and therefore 256 bit keys (32 bytes) have a strength of
128 bits

Therefore the choice now is Ed25519, a variant of Curve25519 from Dan Bernstein
that supports signatures, too. This is a curve where the parameters are of high quality.
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Challenge: Side–Channel Attacks
• ECC Diffie–Hellman key exchange formula is s1 = pk1 ∗ [sk2] = pk2 ∗ [sk1]
• Operations with secret constants and variables under control of the attacker may

leak information, especially if they are lengthy operations.
• Constant time and no data dependent operation mitigates computational

side–channel attacks; Ed25519’s pre–computed base 16 exponentiation helps
further, current–measuring side–channel attacks still maybe possible

• Phase 1 (ephemeral key exchange) is not a big problem, as we choose a random
secret for each connection

• Phase 2 is modified to use the shared secret s1 to dilute the operation:
s2 = pka ∗ [skb ∗ s1] = pkb ∗ [ska ∗ s1]

• The secret ring multiplication is a short operation (multiplication mod l instead of
curve point by scalar) with much less leakage impact

• DH is faster and transmits less data than signature+verification
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Achieved: 3–Way Handshake
• The setup for an encrypted communication is done with three packets exchanged,

no latency overhead to TCP
• The identifying pubkeys are encrypted, so they don’t reveal the identity of Alice

and Bob to Eve
• All state for Bob is “stored” in packets on the net, so the third packet is the one

that actually opens the connection at Bob.
• The third packet also contains a random initialization vector, so if you want to

continue a communication with Bob, a single packet is sufficient.
• The time window for re–connecting is currently set to 10s, but can be made

significantly longer
• Both sides use “tickets” with self–encrypted messages to store state in the network
• The key for self–encryption is rotated frequently (the mentioned 10s) to invalidate

old tickets
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Trust&PKI

• Certification Authorities are a broken PKI and trust model
• The simple “remember the key” strategy of SSH is actually better
• First connection requires more attention, e.g. ask the other side to solve a

captcha to prove human
• Social networks can provide a network of trust: Trust your friends, and use them

to connect you further
• Pubkeys don’t need (nor should) to be public if you only want to be connected

with your friends or peers
• Use the pubkey authentication for logins and alike, instead of passwords
• Shared secrets (e.g. for Socialist Millionaire Protocol) are usually not available: If

you have a shared secret, please use symmetric crypto directly.
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Symmetric Crypto
Evaluation of encryption algorithms

• Must do AEAD encryption — authenticate and encrypt/decrypt together
• Widely used candidate: AES in GCM
• Caveats: Galois counter is not a secure hash, but “only” a polynom checksum,

which is known to be fragile [2], and security is ≤ 64 bits [3], that paper suggests
using GF(p) with p = 2128 + 12451 to improve the weak key situation

• AES uses a constant key — makes side channel attacks more feasible
• Counter mode is actually a stream cipher, suggests using other steam ciphers
• Compare Dan Bernstein’s xsalsa+poly1305: uses a prime field for the

polynome, so this would be a better candidate. Poly1305 still relies on the
encryption for security.
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Keccak
• Suggestion: Use a strong hash for authentication instead
• Obvious candidate is the SHA–3 winner, Keccak, as this has a very good

cryptanalysis
• Even better: Keccak in duplex mode can encrypt while computing the hash (at

almost no cost)
• There’s no constant key, either: Perfect side–channel protected AEAD operation
• Strength >256 bits, whereas AES–256 suffers from related–key attacks: very

good security margin
• Keccak is a universal crypto primitive, with AES in GCM we need three primitives:

hash+AES+GHASH
• Keccak is both NIST–approved and (still) NSA–independent. I use Keccak with

r = 1024 and capacity c = 576 as suggested by the Keccak authors.
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Cipher Algorithm Replacement
General idea: Have a selection of cipher suits and replace weak or broken when
identified. But this has problems:

1 All encrypted communication is stored away in Utah — if the NSA finds a
weakness, they can decrypt the history

2 People are lazy and only implement the easiest and fastest cipher — this is the
one broken first

3 Hardware accelerators and even software is often very difficult to update due to
the “never change a running system” principle

4 The operator or the end user does not have the know–how to make the right
choice of a cipher algorithm — this is guru level

Therefore, the chosen cipher algorithm must last for a long time, and all systems must
have an upgrade path
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Key Usage
All keys are one–time–use only!
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Flow Control (Broken)
• TCP fills the buffer, until a packet has to be dropped, instead of reducing rate

before. Name of the symptom: “Buffer bloat”. But buffering is essential for good
network performance.

buffer overflows

Fill until

Figure : Buffer Bloat



Alternatives?
• LEDBAT tries to achieve a low, constant delay: Works, but not good on fairness
• CurveCP’s flow control is still “a lot of research”
• Therefore, something new has to be done

Figure : That’s how proper flow control should look like
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„Buffer Bloat“

• Retransmits are making the situation worse in case of congestions and therefore
should be avoided

• Riddle: How big should the buffer be, under the assumption that the bandwidth is
used optimally, the bottleneck is on the other side of the connection, and a second
data stream is opened up?

• Answer: about half the round trip delay, which are inevitably filled before any
reaction is possible

• Buffers are good, but you shouldn’t fill them up to the brim
• The problem is inherent in the TCP protocol, but since Windows XP did not

provide window scaling, the per–connection buffer limit was 64k for most
connections on the Internet for quite a long time.
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net2o Flow Control

Figure : Measure the bottleneck using a burst of packets



Client Measures, Server Sets Rate

Client recores the time of the first and last packet in a burst, and calculates the
achieved rate for received packets, extrapolating to the achievable rate
including the dropped packets. This results in the requested rate.

rate := ∆t ∗ burstlen
packets

Server would simply use this rate
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Fairness
Fairness means that concurrent connections achieve about the same data rate, sharing
the same line in a fair way.

• Ideally, a router/switch would schedule buffered packets round–robin, giving each
connection a fair share of the bandwidth. That would change the calculated rate
appropriately, and also be a big relief for current TCP buffer bloat symptoms, as
each connection would have its private buffer to fill up.

• Unfortunately, routers use a single FIFO policy for all connections
• Finding a sufficiently stable algorithm to provide fairness
• We want to adopt to new situations as fast as possible, there’s no point in

anything slow. Especially on wireless connections, achievable rate changes are not
only related to traffic.
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net2o Flow Control — Fair Router

Figure : Fair queuing results in correct measurement of available bandwidth



net2o Flow Control — FIFO Router

Figure : Unfair FIFO queuing results in twice the available bandwidth calculated



Fairness I

• To improve stability of unfair queued packets, we need to improve that P
regulator (proportional to measured rate) to a full PID regulator

• The integral part is the accumulated slack (in the buffer), which we want to keep
low, and the D part is growing/reducing this slack from one measurement to the
next

• We use both parts to decrease the sending rate, and thereby achieve better
fairness

• The I part is used to exponentially lengthen the rate ∆t with increasing slack up
to a maximum factor of 16.

sexp = 2
slack

T where T = max(10ms,max(slacks))
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Fairness D

• To measure the differential term, we measure how much the slack grows (a ∆t
value) from the first to the last burst we do for one measurement cycle (4 bursts
by default, first packet to first packet of each burst)

• This is multiplied by the total packets in flight (head of the sender queue vs.
acknowledged packet), divided by the packets within the measured interval

• A low–pass filter is applied to the obtained D to prevent from speeding up too
fast, with one round trip delay as time constant

• max(slacks)/10ms is used to determine how aggressive this algorithm is
• Add the obtained ∆t both to the rate’s ∆t for one burst sequence and wait that

time before starting the next burst sequence.
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VDSL

Figure : One connection on a VDSL–50 line



VDSL, Congestion

Figure : One of four connections on a VDSL–50 line



Unreliable Air Cable (WLAN)

Figure : Single connection using WLAN



Unreliable Air Cable, Congestion

Figure : One of four connections using WLAN



LAN, 1GBE

Figure : Single connection using 1GBE



LAN 1GBE, Congestion (4 servers)

Figure : One of four connections using 1GBE



LAN 1GBE, Congestion (1 server)

Figure : One of four connections using 1GBE, fair queuing



Flow Control Conclusion

• Flow control works, but a change in the router FIFO policy can help things a lot
• The primary flow control approach is completely different from other approaches:

Measure the available bandwidth!
• Scalability to very slow connections is still lacking: bursts are 8 packets long.
• Congested traffic without fair queuing not satisfying
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Why change the FIFO policy?

• Pushing the problem to the place where it occurs — the router/switch — makes
the solution much easier

• Fair queuing solves the problem of TCP buffer bloat now (for connections
competing with the bloated TCP connection)

• Mitigates DoS attacks (flooding a node with traffic)
• Not essential to deployment, but this result help people who work on improving

router algorithms
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Data and Commands

• Data of several files/streams can be transferred interleaving, so a single
connection can do multiple things in parallel

• Commands are send in command blocks, i.e. there is not just one command per
block, but a sequence of commands!

• Commands are encoded like protobuf, i.e. 7 bits per byte, and if the MSB of the
byte is 1, there’s another byte to follow (allowing arbitrary many commands)

• The command “machine” is a stack architecture.
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Example: Connection Request

"pk1" $, receive-tmpkey
nest[ timestamp1 lit, set-rtdelay gen-reply request-done ]nest $,
push-$ push' nest
tmpkey-request key-request
base lit, csize lit, dsize lit, map-request



Example: Download three files

net2o-code
"Download test" $, type cr ( see-me )
get-ip $400 blocksize! $400 blockalign! stat( request-stats )
"net2o.fs" 0 lit, 0 lit, open-tracked-file
"data/2011-05-13_11-26-57-small.jpg" 0 lit, 1 lit, open-tracked-file
"data/2011-05-20_17-01-12-small.jpg" 0 lit, 2 lit, open-tracked-file
gen-total slurp-all-tracked-blocks send-chunks
0 lit, tag-reply
end-code



Example: Answer to this request
net2o-code
x" 36000000000000000000000000000000019ED2" $, set-ip
$E373 lit, 0 lit, track-size

$134299FF6F829E62 lit, $1A4 lit, 0 lit, set-stat
$9C65C lit, 1 lit, track-size
$130AFDAE900C649E lit, $1A4 lit, 1 lit, set-stat
$9D240 lit, 2 lit, track-size
$130AFDAE92CA4E25 lit, $1A4 lit, 2 lit, set-stat
$148000 lit, set-total
$E373 lit, 0 lit, track-seek

$79000 lit, 1 lit, track-seek
$78C00 lit, 2 lit, track-seek
0 lit, ack-reply
end-code



Distributed Data

• Following the “everything is a file” principle, every data object is a file
• Data objects are accessed by their hash. The associated metadata are “tags”
• Metadata is organized as a distributed prefix hash tree
• Efficient distribution of data is important!
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Efficient Data Distribution

Puzzle: How efficient can you distribute data (e.g. a video stream) in a P2P network?
Assume all peers are equal, and have the capacity to upload one stream in realtime.

• Obvious topology: The bucket chain — this shows that each node feeds the data
through — a 1:1 relation of what you get to what you send

• bucket chain: O(n) latency, O
(
1
n
)

robustness (each node can break the chain)
• Suggestion: Tree structure instead of chain, e.g. a quad–tree. The root divides

the data into four parts, each going down one branch of the tree. The leafs
distribute the data to the other three branches of the tree

• For the quad–tree case, each node has only 8 neighbors: 4 sources and 4 sinks
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Figure : Avalanche distribution with quad–tree of depth 2



Possible Performance
• Trees with a bigger base reduce latency. Example: To transfer a Justin Bieber

tweet to 50 million followers, a binary tree needs 25.5 hops on average, a
quad–tree 12.8 hops, and an oct–tree 8.5 hops.

• A typical domestic (inside e.g. Germany) hop–to–hop time is just 20ms.
International hops can be in the order of 250ms. Assuming there is only one
international hop in the chain, the latency to distribute Justin Bieber’s babbling is
typically just 500ms in a quad–tree.

• Rule of thumb: bandwidth = latency , i.e. if it takes 20ms from hop to hop, each
node should replicate data for 20ms — if we make the tree wider, the linear effort
of replicating data will dominate transfer time, if we make the tree more narrow,
the hop–to–hop time will dominate.

• The tree–like graph greatly reduces the number of nodes to know
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• A global distributed hash tree is 100% observable by anybody with enough money
• Private trees shared only between a group of people: “dark trees in a dark forrest”
• Use different identities for distinct groups (one for your friends, one for your work,

one for sharing pr0n), each one only known to that group: “dark social graph”
• Your public ID is only for first contacts and the things you want to publish (i.e.

PR)
• Use neighborhood relationships to limit spread of data — e.g. a node participating

in a data distribution tree may only be known to the peer nodes in that tree
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afterthough

• Therefore, the application logic is usually on the server side
• This doesn’t work for a P2P network!
• Content is structured text, images, videos, music, etc.
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App–Centric World

• There’s a phenomenon I call “Turing creep”: Every sufficiently complex system
contains a user–accessible Turing–complete language

• Corollary: Every efficient sufficiently complex system can execute native machine
code

• The application logic is to present the data; data itself is as above: structured
text, images, videos, music, etc.

• Executing (especially efficient) code from the net raises obvious questions about
security
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How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



Formats&Requirements
How to display things

GPU
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Videos

utf−8,markup
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Music

png, jpg, h264 stills

Pictures

mp3,AAC, vorbis, opus

Keyboard

Camera

Camera

Microphone

Texture

Texture

Formats Elements

render

typeset

extract

extract
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Why OpenGL?
OpenGL can do everything

OpenGL renders:

1 Triangles, lines, points — simple components
2 Textures and gradients
3 and uses shader programs — the most powerful thing in OpenGL from 2.0.

Real requirement: visualization of any data. OpenGL can do that.
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How to connect the media?
Lemma: every glue logic will become Turing complete

• currently used glue: HTML+CSS+JavaScript
• containers with Flash, Java, ActiveX, PDF, Google’s NaCl…
• conclusion: use a powerful tool right from start!
• browser: run–time and development tool for applications
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Frameworks

• libsoil for images (PNG+JPEG loading into a texture)
• freetype-gl for fonts (TrueType/OpenType into a texture)
• OpenMAX on Android, gstreamer on Linux: videos into a texture
• MINOΣ2: Lightweight OpenGL–based widget library in Forth (still a lot of work in

progress)
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“Layer 8” is the human in front of the screen. What will people use this for?

1 Sharing photos and videos
2 Chat & video telephony
3 News, opinions, scientific papers, sharing knowledge
4 Online shopping
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What’s the problem with those?

From the point of view of Hans–Peter Uhl

1 “Pirated” videos and music (Hollywood will sue me), child porn+terrorism
2 Molested children
3 Dissident opinions, leaks
4 Sex, Drugs & Weapons (Rock’n’Roll see 1.)
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What to do about it?

• I don’t want to know what my users want to do, nor do they want me to know
• Public shared stuff is possible to track down — copyright is a political problem,

the technology we build is there for making copies, primarily for cat videos and
duck–face selfies

• net2o is not primarily targeted at people who have “something to hide”, it is
intended to offer state–of–the–art privacy protection to everybody without
performance and usability drawbacks

• Normal criminal investigation has still a very good chance to catch criminals
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How to fund it
• Companies are not very trustworthy: If the NSA pays the bill, they do whatever

the NSA wants. However, this problem also exists for FOSS projects to some
extent (e.g. Dual_EC_DRBG was implemented in OpenSSL after receiving
funding from an unnamed company).

• Kickstarter funding looks a lot more interesting, and can work for FOSS projects,
too

• Ad–based funding is pretty problematic if you don’t want to sell customer’s data
one way or another

• Storage space “in the cloud” comes with the responsibility to take copyright
violations down

• The whole economy behind such a network is huge; the cost for developing are
tiny compared to that
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Adoption

• People have nothing to hide, so security is not a primary feature
• Ease of use is a key for success
• Adoption rate usually is exponential with a quite constant replication factor, i.e.

people will complain about “empty wasteland”
• People like to feel good — that’s why Facebook has only a “like” button
• Censorship is not liked: Platforms like Facebook&Co. take down sexual content

and copyrighted stuff. I won’t (because I can’t, by design)
• Filter bubble instead of censorship: Don’t be friend with people who share things

you don’t like
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For Further Reading I

Bernd Paysan
net2o source repository
http://fossil.net2o.de/net2o

Shay Gueron, Vlad Krasnov
The fragility of AES-GCM authentication algorithm
http://eprint.iacr.org/2013/157.pdf

Markku-Juhani O. Saarinen
GCM, GHASH and Weak Keys
http://www.ecrypt.eu.org/hash2011/proceedings/hash2011_03.pdf

http://fossil.net2o.de/net2o
http://eprint.iacr.org/2013/157.pdf
http://www.ecrypt.eu.org/hash2011/proceedings/hash2011_03.pdf
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