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net2o in a nutshell

net2o consists of the following 6 layers (implemented bottom up):

2 Path switched packets with 2n size writing into shared memory buffers
3 Ephemeral key exchange and signatures with Ed25519, symmetric authenticated

encryption+hash+prng with Keccak
4 Timing driven delay minimizing flow control
5 Stack–oriented tokenized command language
6 Distributed data (files) and distributed metadata (prefix hash trie)
7 Apps in a sandboxed environment for displaying content
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Objectives

net2o’s design objectives are

• lightweight, fast, scalable
• easy to implement
• secure
• media capable
• works as overlay on current networks (UDP/IP), but can replace the entire stack
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Switching Packets, Routing Connections
• Switches are faster and easier to implement than routers — LANs (Ethernet) and

backbones (MPLS) already use switching; use the concept of MPLS label stacks
to use switching everywhere

• Routing then is a combination of destination resolution and routing calculation
(destination path lookup)

Path Switching

• Take first n bits of path field and select destination
• Shift target address by n
• Insert bit-reversed source into the rear end of the path field to mark the way back

• The receiver bit–flips the path field, and gets the return address

• Easy handover possible
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Packet Format

Bytes Comment
Flags 2 priority, length, flow control flags
Path 16 Internet 1.0 terminology: “address”

Address 8 address in memory, ≈port+sequence number
Data 64 ∗ 20..15 up to 2MB packet size, enough for the next 40 years

Chksum 16 cryptographic checksum

addressflag path data Chksum



Security: Indirect Attacks are Cheaper



Key Exchange

ECC Elliptic Curve Cryptography has still only a generic attack (i.e. can be
considered “unscratched”, as the attack uses a fundamental property of
the problem), and therefore 256 bit keys (32 bytes) have a strength of
128 bits

Therefore the choice now is Ed25519, a variant of Curve25519 from Dan Bernstein
that supports signatures, too. This is a curve where the parameters are of high quality.
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Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel protected AEAD operation

(no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive (hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent. I use Keccak with

r = 1024 and capacity c = 576 as suggested by the Keccak authors.



Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel protected AEAD operation

(no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive (hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent. I use Keccak with

r = 1024 and capacity c = 576 as suggested by the Keccak authors.



Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel protected AEAD operation

(no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive (hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent. I use Keccak with

r = 1024 and capacity c = 576 as suggested by the Keccak authors.



Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel protected AEAD operation

(no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive (hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent. I use Keccak with

r = 1024 and capacity c = 576 as suggested by the Keccak authors.



Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel protected AEAD operation

(no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive (hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent. I use Keccak with

r = 1024 and capacity c = 576 as suggested by the Keccak authors.



Symmetric Crypto: Keccak

Keccak used for the following reasons:

• Good cryptanalysis
• Keccak in duplex mode provides perfect side–channel protected AEAD operation

(no constant key to snoop)
• Strength >256 bits: very good security margin
• Keccak is a universal crypto primitive (hash+encrypt+authenticate)
• Keccak is both NIST–approved and (still) NSA–independent. I use Keccak with

r = 1024 and capacity c = 576 as suggested by the Keccak authors.



Key Usage
All keys are one–time–use only!
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Flow Control (Broken)
• TCP fills the buffer, until a packet has to be dropped, instead of reducing rate

before. Name of the symptom: “Buffer bloat”. But buffering is essential for good
network performance.

buffer overflows

Fill until

Figure : Buffer Bloat



Alternatives?
• LEDBAT tries to achieve a low, constant delay: Works, but not good on fairness
• CurveCP’s flow control is still “a lot of research”
• Therefore, something new has to be done

Figure : That’s how proper flow control should look like
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net2o Flow Control

Figure : Measure the bottleneck using a burst of packets



Client Measures, Server Sets Rate

Client recores the time of the first and last packet in a burst, and calculates the
achieved rate for received packets, extrapolating to the achievable rate
including the dropped packets. This results in the requested rate.

rate := ∆t ∗ burstlen
packets

Server would simply use this rate
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Fairness
Fairness means that concurrent connections achieve about the same data rate, sharing
the same line in a fair way.

• Ideally, a router/switch would schedule buffered packets round–robin, giving each
connection a fair share of the bandwidth. That would change the calculated rate
appropriately, and also be a big relief for current TCP buffer bloat symptoms, as
each connection would have its private buffer to fill up.

• Unfortunately, routers use a single FIFO policy for all connections
• Finding a sufficiently stable algorithm to provide fairness
• We want to adopt to new situations as fast as possible, there’s no point in

anything slow. Especially on wireless connections, achievable rate changes are not
only related to traffic.
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net2o Flow Control — Fair Router

Figure : Fair queuing results in correct measurement of available bandwidth



net2o Flow Control — FIFO Router

Figure : Unfair FIFO queuing results in twice the available bandwidth calculated



Fairness I

• To improve stability of unfair queued packets, we need to improve that P
regulator (proportional to measured rate) to a full PID regulator

• The integral part is the accumulated slack (in the buffer), which we want to keep
low, and the D part is growing/reducing this slack from one measurement to the
next

• We use both parts to decrease the sending rate, and thereby achieve better
fairness

• The I part is used to exponentially lengthen the rate ∆t with increasing slack up
to a maximum factor of 16.

sexp = 2
slack

T where T = max(10ms,max(slacks))
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Fairness D

• To measure the differential term, we measure how much the slack grows (a ∆t
value) from the first to the last burst we do for one measurement cycle (4 bursts
by default, first packet to first packet of each burst)

• This is multiplied by the total packets in flight (head of the sender queue vs.
acknowledged packet), divided by the packets within the measured interval

• A low–pass filter is applied to the obtained D to prevent from speeding up too
fast, with one round trip delay as time constant

• max(slacks)/10ms is used to determine how aggressive this algorithm is
• Add the obtained ∆t both to the rate’s ∆t for one burst sequence and wait that

time before starting the next burst sequence.
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VDSL

Figure : One connection on a VDSL–50 line



VDSL, Congestion

Figure : One of four connections on a VDSL–50 line



Unreliable Air Cable (WLAN)

Figure : Single connection using WLAN



Unreliable Air Cable, Congestion

Figure : One of four connections using WLAN



LAN, 1GBE

Figure : Single connection using 1GBE



LAN 1GBE, Congestion (4 servers)

Figure : One of four connections using 1GBE



LAN 1GBE, Congestion (1 server)

Figure : One of four connections using 1GBE, fair queuing



Data and Commands

• Data of several files/streams can be transferred interleaving, so a single
connection can do multiple things in parallel

• Commands are send in command blocks, i.e. there is not just one command per
block, but a sequence of commands!

• Commands are encoded like protobuf, i.e. 7 bits per byte, and if the MSB of the
byte is 1, there’s another byte to follow (allowing arbitrary many commands)

• The command “machine” is a stack architecture.
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Example: Download three files

net2o-code
"Download test" $, type cr ( see-me )
get-ip $400 blocksize! $400 blockalign! stat( request-stats )
"net2o.fs" 0 lit, 0 lit, open-tracked-file
"data/2011-05-13_11-26-57-small.jpg" 0 lit, 1 lit, open-tracked-file
"data/2011-05-20_17-01-12-small.jpg" 0 lit, 2 lit, open-tracked-file
gen-total slurp-all-tracked-blocks send-chunks
0 lit, tag-reply
end-code



Distributed Data

• Following the “everything is a file” principle, every data object is a file
• Data objects are accessed by their hash. The associated metadata are “tags”
• Metadata is organized as a distributed prefix hash tree
• Efficient distribution of data is important!
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Tree Distribution Network

root

Figure : Avalanche distribution with quad–tree of depth 2



Possible Performance
• Trees with a bigger base reduce latency. Example: To transfer a Justin Bieber

tweet to 50 million followers, a binary tree needs 25.5 hops on average, a
quad–tree 12.8 hops, and an oct–tree 8.5 hops.

• A typical domestic (inside e.g. Germany) hop–to–hop time is just 20ms.
International hops can be in the order of 250ms. Assuming there is only one
international hop in the chain, the latency to distribute Justin Bieber’s babbling is
typically just 500ms in a quad–tree.

• Rule of thumb: bandwidth = latency , i.e. if it takes 20ms from hop to hop, each
node should replicate data for 20ms — if we make the tree wider, the linear effort
of replicating data will dominate transfer time, if we make the tree more narrow,
the hop–to–hop time will dominate.

• The tree–like graph greatly reduces the number of nodes to know
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afterthough

• Therefore, the application logic is usually on the server side
• This doesn’t work for a P2P network!
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App–Centric World

• There’s a phenomenon I call “Turing creep”: Every sufficiently complex system
contains a user–accessible Turing–complete language

• Corollary: Every efficient sufficiently complex system can execute native machine
code

• The application logic is to present the data; data itself is as above: structured
text, images, videos, music, etc.

• Executing (especially efficient) code from the net raises obvious questions about
security
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How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



How to securely execute code?
There are several options tried; as usual, things are broken:

1 Execute code in a controlled secure VM, see for example Java. This is broken by
design, as securing something from the inside doesn’t work.

2 Execute code in a sandbox. This has shown as more robust, depending on how
complex the outside of the sandbox is.

3 Public inspection of code. This is how the open source world works, but the
underhanded C contest shows that inspection is tricky.

4 Scan for known evil code. This is the security industry’s approach, and it is not
working.

5 Code signing can work together with public inspection — but using it for
accountability doesn’t work

Therefore the choice is to sandbox public inspected code.



Formats&Requirements
How to display things

GPU

Text

Videos

utf−8,markup

OpenType

mkv, h264
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Input Output

Font
Glyphs

Texture
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Music

png, jpg, h264 stills

Pictures

mp3,AAC, vorbis, opus

Keyboard

Camera

Camera

Microphone

Texture

Texture

Formats Elements

render

typeset

extract

extract

extract



Why OpenGL?
OpenGL can do everything

OpenGL renders:

1 Triangles, lines, points — simple components
2 Textures and gradients
3 and uses shader programs — the most powerful thing in OpenGL from 2.0.

Real requirement: visualization of any data. OpenGL can do that.
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How to connect the media?
Lemma: every glue logic will become Turing complete

• currently used glue: HTML+CSS+JavaScript
• containers with Flash, Java, ActiveX, PDF, Google’s NaCl…
• conclusion: use a powerful tool right from start!
• browser: run–time and development tool for applications
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Frameworks

• libsoil for images (PNG+JPEG loading into a texture)
• freetype-gl for fonts (TrueType/OpenType into a texture)
• OpenMAX on Android, gstreamer on Linux: videos into a texture
• MINOΣ2: Lightweight OpenGL–based widget library in Forth (still a lot of work in

progress)
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For Further Reading I

Bernd Paysan
net2o source repository and wiki
http://fossil.net2o.de/net2o

http://fossil.net2o.de/net2o
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